Three binding sites for stalk protein dimers are generally present in ribosomes from archaeal organism.

نویسندگان

  • Yasushi Maki
  • Tetsuo Hashimoto
  • Min Zhou
  • Takao Naganuma
  • Jun Ohta
  • Takaomi Nomura
  • Carol V Robinson
  • Toshio Uchiumi
چکیده

Ribosomes have a characteristic protuberance termed the stalk, which is indispensable for ribosomal function. The ribosomal stalk has long been believed to be a pentameric protein complex composed of two sets of protein dimers, L12-L12, bound to a single anchor protein, although ribosomes carrying three L12 dimers were recently discovered in a few thermophilic bacteria. Here we have characterized the stalk complex from Pyrococcus horikoshii, a thermophilic species of Archaea. This complex is known to be composed of proteins homologous to eukaryotic counterparts rather than bacterial ones. In truncation experiments of the C-terminal regions of the anchor protein Ph-P0, we surprisingly observed three Ph-L12 dimers bound to the C-terminal half of Ph-P0, and the binding site for the third dimer was unique to the archaeal homologs. The stoichiometry of the heptameric complex Ph-P0(Ph-L12)(2)(Ph-L12)(2)(Ph-L12)(2) was confirmed by mass spectrometry of the intact complex. In functional tests, ribosomes carrying a single Ph-L12 dimer had significant activity, but the addition of the second and third dimers increased the activity. A bioinformatics analysis revealed the evidence that ribosomes from all archaeal and also from many bacterial organisms may contain a heptameric complex at the stalk, whereas eukaryotic ribosomes seem to contain exclusively a pentameric stalk complex, thus modifying our view of the stalk structure significantly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Basis for the Function of the Ribosomal L7/12 Stalk in Factor Binding and GTPase Activation

The L7/12 stalk of the large subunit of bacterial ribosomes encompasses protein L10 and multiple copies of L7/12. We present crystal structures of Thermotoga maritima L10 in complex with three L7/12 N-terminal-domain dimers, refine the structure of an archaeal L10E N-terminal domain on the 50S subunit, and identify these elements in cryo-electron-microscopic reconstructions of Escherichia coli ...

متن کامل

Stability of the ‘L12 stalk’ in ribosomes from mesophilic and (hyper)thermophilic Archaea and Bacteria

The ribosomal stalk complex, consisting of one molecule of L10 and four or six molecules of L12, is attached to 23S rRNA via protein L10. This complex forms the so-called 'L12 stalk' on the 50S ribosomal subunit. Ribosomal protein L11 binds to the same region of 23S rRNA and is located at the base of the 'L12 stalk'. The 'L12 stalk' plays a key role in the interaction of the ribosome with trans...

متن کامل

Archaeal aminoacyl-tRNA synthetases interact with the ribosome to recycle tRNAs

Aminoacyl-tRNA synthetases (aaRS) are essential enzymes catalyzing the formation of aminoacyl-tRNAs, the immediate precursors for encoded peptides in ribosomal protein synthesis. Previous studies have suggested a link between tRNA aminoacylation and high-molecular-weight cellular complexes such as the cytoskeleton or ribosomes. However, the structural basis of these interactions and potential m...

متن کامل

Bacterial ribosome requires multiple L12 dimers for efficient initiation and elongation of protein synthesis involving IF2 and EF-G

The ribosomal stalk in bacteria is composed of four or six copies of L12 proteins arranged in dimers that bind to the adjacent sites on protein L10, spanning 10 amino acids each from the L10 C-terminus. To study why multiple L12 dimers are required on the ribosome, we created a chromosomally engineered Escherichia coli strain, JE105, in which the peripheral L12 dimer binding site was deleted. T...

متن کامل

Molecular dissection of the silkworm ribosomal stalk complex: the role of multiple copies of the stalk proteins

In animal ribosomes, two stalk proteins P1 and P2 form a heterodimer, and the two dimers, with the anchor protein P0, constitute a pentameric complex crucial for recruitment of translational GTPase factors to the ribosome. To investigate the functional contribution of each copy of the stalk proteins, we constructed P0 mutants, in which one of the two C-terminal helices, namely helix I (N-termin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 45  شماره 

صفحات  -

تاریخ انتشار 2007